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Abstract

An accurate series solution has been obtained for a piece-homogeneous elastic plane containing a finite array of non-
overlapping elliptic inclusions of arbitrary size, aspect ratio, location and elastic properties. The method combines stan-
dard Muskhelishvili�s representation of general solution in terms of complex potentials with the superposition principle
and newly derived re-expansion formulae to obtain a complete solution of the many-inclusion problem. By exact sat-
isfaction of all the interface conditions, a primary boundary-value problem stated on a complicated heterogeneous
domain has been reduced to an ordinary well-posed set of linear algebraic equations. A properly chosen form of poten-
tials provides a remarkably simple form of solution and thus an efficient computational algorithm. The theory devel-
oped is rather general and can be applied to solve a variety of composite mechanics problems. The advanced models of
composite involving up to several hundred inclusions and providing an accurate account for the microstructure statis-
tics and fiber–fiber interactions can be considered in this way. The numerical examples are given showing high accuracy
and numerical efficiency of the method developed and disclosing the way and extent to which the selected structural
parameters influence the stress concentration at the matrix–inclusion interface.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The method of complex potentials developed more than 50 years ago by Muskhelishvili (1953) is now
well recognized as a powerful and easy-to-use tool for solving a variety of two-dimensional (2D) linear
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elasticity problems including those stated on the multiply connected domains. This fact makes the method
attractive and potentially very useful in micromechanics of fibrous composites because it provides an effi-
cient tool for analyzing the advanced many-inclusion model problems with an accurate account for the
fiber–fiber interaction. In the theoretical study of composites reinforced by unidirectional circular fibers,
the method has been applied successfully by Horii and Nemat-Nasser (1985), Golovchan et al. (1993),
Buryachenko and Kushch (in press), among many others.

At the same time, to the best of the authors� knowledge, the works where interaction of elliptic in cross-
section fibers were studied by the method of complex potentials are absent. Moreover, we could not find in
the literature a solution of even a single elliptic inclusion problem being a particular limiting case of well-
known Eshelby�s solution, written in terms of complex potentials. This fact, at first sight, is somewhat sur-
prising because the solution of a similar problem, namely, an elastic plane with several holes of general
shape, can be found in a regular textbook on the theory of analytical functions. The matter here is that
the conformal mapping technique working so perfectly for a plane with holes does not allow straight-
forward extension on the case of inhomogeneities.

To study interaction between the elliptic inclusions, both the numerical and analytical methods were
applied. Among the works based on numerical analysis, we mention Bystroem (2003) who combined the
cell model approach with the finite element method to evaluate effective stiffness of a composite of long
elliptic fibers. To study interaction of two elliptic inclusions, the method of singular integral equations
was utilized by Noda and Matsumo (1998). As to analytical solutions, here, probably, the most comprehen-
sive work was done by Meisner and Kouris (1995). To obtain a series solution for two identical, symmet-
rically placed elliptic inhomogeneities embedded in an infinite plane, they made use of the Papkovich-
Neihber representation of general solution in terms of real potentials. Derived by accurate matching of
the elastic fields in the matrix and inclusions an infinite set of equations appears, however, to be rather in-
volved and thus difficult to use; also, it is uncertain whether or not it possible to extend the solution ob-
tained in this way on more general geometry of problem.

It was mentioned already that using the complex potentials in 2D linear elasticity is advantageous and
much more fruitful in comparison with their real-valued counterparts. At the same time, the common
knowledge is that the method of potentials is efficient only where the potential functions were taken in
the proper form.1 Several attempts had been made to apply the theory of complex potentials to solve
for interaction between the elliptic inclusions, but up to now, only partial solutions were found. So, the
point-to-point collocation scheme has been utilized by Kosmodamiansky (1972) to fulfill the matrix–
inclusion interface bonding conditions; Kaloerov and Goryanskaya (1995) have applied the least square
fitting to determine the unknown series expansion coefficients. Both the approaches, strictly speaking, can-
not be regarded as rigorous from a mathematical standpoint; not surprisingly, the corresponding numerical
algorithms appeared to be rather unstable (see, e.g., Lu and Kim, 1990).

In the present work, an accurate series solution has been developed for an elastic plane containing a
finite array of non-overlapping elliptic inhomogeneities. We impose no restrictions on their number, size,
aspect ratio, elastic properties and arrangement. The only condition adopted here for simplicity sake is that
all the inclusions are equally oriented; however, with minor modifications, this approach is able to study
arbitrarily oriented inclusions as well. In what follows, the basic notations are introduced first and a general
solution has been obtained for a single elliptic inclusion in an elastic plane subject to inhomogeneous exter-
nal stress field. Then, this solution has been combined with the superposition principle and re-expansion
formulae to derive a complete solution of the many-inclusion problem. In Section 4, application of the the-
1 It is appropriate to mention here the work by Stevenson (1942) who suggested a special form of complex potentials in the single
elliptic hole problem and obtained the solution in a much more simple and elegant way as compared with the standard conformal
mapping technique.
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ory developed to the composite micromechanics problems is discussed. The results of the numerical study
are summarized in the last section and, finally, two appendices provide all the necessary background theory.
2. Single elliptic inclusion in an inhomogeneous external field

Consider an infinite isotropic elastic solid with a single, elliptic in cross-section, long fiber embedded. We
assume the external load to be applied in a way that the stress field does not vary in the fiber axis direction. In
this case, the problem can be stated as 2D (plane strain or plane stress formulation), which, in turn, enables
using the method of complex potentials. To describe geometry of the problem, we introduce first the Carte-
sian coordinate systemOx1x2 so that its origin coincides with the centroid of ellipse whereas theOx1 andOx2
axes are directed along the major and minor axes of the ellipse. An aspect ratio of the ellipse is e = l2/l1,
where l1 and l2 are the major and minor, respectively, semi-axes of the ellipse. Another derivative geometric

parameter to be used in subsequent analysis is the inter-foci distance 2d, where d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 � l22

q
.

We also introduce two kinds of complex variables. The first one is a point of Cartesian complex plane
z = x1 + ix2. The second variable n = f + ig is defined as
z ¼ xðnÞ ¼ d cosh n. ð1Þ
Eq. (1) defines, in fact, an elliptic coordinate system with f and g as ‘‘radial’’ and ‘‘angular’’ coordinates,
respectively. So, the boundary of the ellipse is the coordinate line given by the equation
f ¼ f0 ¼ ln
l1 þ l2

d

� �
¼ 1

2
ln

1þ e
1� e

� �
; ð2Þ
i.e., the points at matrix–elliptic fiber interface are the functions of angular coordinate g only. This fact
makes the elliptic complex variable n particularly useful in the problems formulated on domains with ellip-
tic boundaries/interfaces.

Following Muskhelishvili (1953), we express the displacement vector u = (u1, u2)
T in terms of complex

potentials u and w, namely
u ¼ u1 þ iu2 ¼ ,uðzÞ � ðz� �zÞu0ðzÞ � wðzÞ; ð3Þ

where , ¼ 3� 4m for plane strain and , ¼ 3�m

1þm for plane stress problem; m is Poisson�s ratio and zmeans com-
plex conjugate of z. Noteworthy, the expression (3) is slightly different in form but equivalent to formulas
originally suggested by Muskhelishvili. In fact, (3) reduces to the standard form by replacing w(z) with
w(z) � zu 0(z), the latter being an analytical function of variable z as well. However, as will be shown below,
representation (3) is advantageous for our purpose in several aspects. Corresponding to u (3) the Cartesian
components of stress tensor r are given by
r11 þ r22 ¼ 4G u0ðzÞ þ u0ðzÞ
� �

; ð4Þ

r22 � r11 þ 2ir12 ¼ 4G ð�z� zÞu00ðzÞ � u0ðzÞ þ w0ðzÞ½ �;

where G is a shear modulus, r = Le and e ¼ 1

2
½ruþ ðruÞT�.

The displacement u and traction Tn = r Æ n are assumed to be continuous through the elliptic matrix–
inclusion interface f = f0:
½½u��f¼f0
¼ 0; ½½r � n��f¼f0

¼ 0; ð5Þ
where [[f]]S means a jump of f through the boundary S: so, ½½u��f¼f0
¼ ðuð0Þ � uð1ÞÞf¼f0

and upper indices ‘‘0’’
and ‘‘1’’ refer to matrix and inclusion, respectively. Also, G = G0, m = m0 in the matrix and G = G1, m = m1 in
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the inclusion. Satisfying the conditions (5) can be greatly simplified by re-writing displacement and traction
vectors in (5) in terms of their curvilinear (actually, normal and tangential to interface f = f0) components:
u ¼ uf þ iug and T n ¼ rff þ irfg. ð6Þ

They also can be expressed in terms of complex potentials (Muskhelishvili, 1953):
uf þ iug ¼
x0ðnÞ
x0ðnÞj j ½,uðzÞ � z� �zð Þu0ðzÞ � wðzÞ�; ð7Þ

rff � irfg ¼ 2G u0ðzÞ þ u0ðzÞ � x0ðnÞ
x0ðnÞ

½ðz� zÞu00ðzÞ � u0ðzÞ þ w0ðzÞ�
( )

;

where, from (1), x 0(n) = dz/dn = d sinh n.
The key point is, of course, the proper choice of the form of potential functions u and w. A simple and

straightforward (but, definitely, not the best) way is to write them by analogy with Meisner and Kouris
(1995) for, say, matrix domain V0 as
u ¼
X
n

Ant
�n; w ¼

X
n

Bnt
�n; ð8Þ
where An and Bn are the complex-valued coefficients, and t = exp n. However, in this case the resolving set
of equations appears to be rather complicated and, moreover, the Eshelby-type problem known to possess
exact closed form solution is given by infinite series. We take w, by analogy to the 3D case (Kushch, 1996),
in the following form:
w ¼ w0 � w1; w0 ¼
X
n

Bnt
�n; w1 ¼

sinh f0
sinh n

t
t0

� t0
t

� �X
n

nAnt
�n; ð9Þ
where t0 = exp(f0). As is obvious, (9) is an analytical function of z; indeed, the functions tn

sinh n ¼ d
n

dtn

dz can be
considered as an alternate set of basis functions in (8) obtained by differentiation of tn with respect to z. The
potentials ui and wi for solution in the inclusion V1 are also given by (8) and (9), with replacing An and Bn to
Cn and Dn, respectively; Cn and Dn are also the complex-valued coefficients, which, as well as An and Bn, are
found from the interface condition (5).

With u in the form (8) and w in the form (9), the expression of u and Tn (7) at the interface f = f0 is
simplified dramatically; for details of derivation, see Appendix A. So, by virtue of (A.5), from the first con-
dition (5) one finds ½½u��f¼f0

¼ ½½,u� w0��f¼f0
¼ 0; in explicit form,
X

n

ð,0Ane
�nf0�ing � Bne

�nf0þingÞ ¼
X
n

ð,1Cne
�nf0�ing � Dne

�nf0þingÞ; ð10Þ
where ,i ¼ ,ðmiÞ. Using the orthogonality property of Fourier harmonics exp(ing) reduces the functional
equality (10) to an infinite set of linear algebraic equations
,0Ant
�n
0 � B�nt

n
0 ¼ ,1Cnt

�n
0 � D�nt

n
0. ð11Þ
By applying the same procedure to the second condition in (5) and taking account of (A.13) re-written as
½½x0T n��f¼f0

¼ ½½2Gðu0 � w0
0Þ��f¼f0

¼ 0 we get another set of linear equations:
Ant
�n
0 þ B�nt

n
0 ¼ kðCnt

�n
0 þ D�nt

n
0Þ; ð12Þ
where k = G1/G0.
It is advisable, for computational purpose, to introduce new scaled variables eAn ¼ Ant�n

0 , etc.; we obtain
,0
eAn � eB�n ¼ ,1

eCn � eD�n; ð13Þ
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eAn þ eB�n ¼ kðeCn þ eD�nÞ; �1 < n < 1.
The form of Eq. (13) is remarkably simple, if not simplest (see, for comparison, Meisner and Kouris (1995))
which clearly indicates rational choice of the potential functions (9).

The solution we derived is rather general and in each specific case, the extra degrees of freedom can be
excluded by imposing certain additional constraints drawn from physical considerations. One of them is the
regularity condition of the displacement field inside the inclusion; i.e., it must be continuous and finite for
z 2 V1 meaning that Laurent series expansions of corresponding complex potentials contain the terms with
non-negative powers of z only. It has been shown in Appendix A that the following relations between Cn

and Dn with positive and negative index n,
Cn ¼ C�n; Dn ¼ D�n þ 2n sinhð2f0ÞC�n; n > 0; ð14Þ

provide regularity of u(1) and r(1) inside the inclusion.

As to solution in the matrix domain, it is natural to represent it as a sum of regular and singular parts,
u(0) = ur + us. Here, ur is the incident, or far field, whereas us describes disturbance field induced by the
inclusion; expectably, us ! 0 as jzj ! 1. The corresponding potentials u and w also can be divided onto
singular and regular parts
u ¼ us þ ur; w ¼ ws þ wr. ð15Þ

The explicit form of us and ws is given by Eqs. (8) and (9), respectively, where we keep the terms with neg-
ative powers of tonly to provide vanishing of disturbance field at infinity, so
An ¼ Bn � 0 for n 6 0. ð16Þ

On the contrary, ur is assumed to be regular, with the potentials
ur ¼
X
n

ant�n; wr ¼
X
n

bn � 2nan
sinh f0
sinh n

sinhðn� f0Þ
� �

t�n; ð17Þ
where an and bn comply (14) as well. For example, let us consider a far field induced by the remote constant
strain tensor e1 = {Eij}. Representation of the corresponding linear displacement field
ur ¼ ðE11x1 þ E12x2Þ þ iðE12x1 þ E22x2Þ; ð18Þ

takes the form (3) with the potentials (17), where
a�1 ¼
d
4

E11 þ E22

ð,0 � 1Þ ; b�1 ¼ a�1t
�2
0 þ d

4
ðE22 � E11 þ 2iE12Þ; ð19Þ
a1 and b1 are given by (14) and all other an and bn for n 5 ±1 are equal to zero. For the far stress tensor
r1 = {Sij} instead of e1 prescribed, we have quite similar expressions:
a�1 ¼
d

16G0

ðS11 þ S22Þ; b�1 ¼ a�1t
�2
0 þ d

8G0

ðS22 � S11 þ 2iS12Þ. ð20Þ
The displacement ur and corresponding traction T r
n at the interface f = f0 take the form (A.5) and (A.13),

respectively. Applying the procedure analogous to that described above gives us an infinite linear system
,0Ant
�n
0 � B�nt

n
0 þ ,0ant�n

0 � b�nt
n
0 ¼ ,1Cnt

�n
0 � D�nt

n
0; ð21Þ

Ant
�n
0 þ B�nt

n
0 þ ant�n

0 þ b�nt
n
0 ¼ kðCnt

�n
0 þ D�nt

n
0Þ.
In the one-inclusion problem considered in this section, we assume ur (or, the same, an and bn) to be known.
In this case, Eq. (21) together with (14) and (16) form a closed set of linear algebraic equations possessing a
unique solution. By substituting (14) and (16) into (21) we come to resolving system
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,0An � ,1Cn þ ðDn � 2n sinh 2f0CnÞt2n0 ¼ �,0an þ b�nt
2n
0 ;

Bn þ ,1Cnt
2n
0 � Dn ¼ ,0a�nt

2n
0 � bn;

An � kCn � kðDn � 2n sinh 2f0CnÞt2n0 ¼ �an � b�nt
2n
0 ;

Bn � kCnt
2n
0 � kDn ¼ �a�nt

2n
0 � bn; n ¼ 1; 2; . . . ;

ð22Þ
with the unknowns An, Bn, Cn and Dn (n > 0) and with the coefficients an and bn entering the right-hand side
vector. For the Eshelby-type problem with the constant far strain e1 or stress field r1 is prescribed, these
coefficients are given by (19) or (20), respectively. The corresponding resolving system (22) consists of four
equations for n = 1; for the explicit expressions of the coefficients A1, B1, C1 and D1, see Section 4, Eq. (56).

The solution we derived is valid for any 0 < e < 1. To complete this section, we consider the limiting case
e ! 0 where the ellipse degenerates into the cut jx1j 6 d in the complex plane (another limit, e ! 1 when the
ellipse becomes a circle is rather trivial). By putting k = 0 we get a straight crack, the stress field around
which is known to have singularity in the crack tips. In the linear fracture mechanics, the parameter called
stress intensity factor (SIF) and defined as
KI þ iKII ¼ lim
z!d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðz� dÞ

p
r22 þ ir12ð Þ ð23Þ
is generally accepted to quantify the stress field near the tip of crack. No problems arise with taking this
limit in the above solution: for e ! 0 we have, from (2), f0 ! 0 and t0 ! 1. After some standard algebra
one obtains the formula
KI þ iKII ¼ �2G0

ffiffiffiffiffiffiffiffi
p=d

p X1
n¼1

n An þ Bn

� 	
; ð24Þ
valid for arbitrary, not necessarily uniform, external load.
3. Finite array of inclusions

Now, we proceed with a piece-homogeneous plane containing a finite number N of non-overlapping
elliptic inclusions Vp with semi-axes l1p, l2p and elastic moduli Gp and mp, p = 1, 2, . . ., N. The centroid of
the pth ellipse lies in the point Zp = X1p + iX2p; for simplicity sake, we assume all ellipses to be equally ori-
ented. Also, we introduce local Cartesian coordinate systems Opx1px2p centered in Zp. The local coordinates
of different systems are related by
zp ¼ Zpq þ zq; where zp ¼ x1p þ ix2p and Zpq ¼ Zq � Zp. ð25Þ

Next, we define the local curvilinear coordinates np = fp + igp by analogy with (1): zp = dpcoshnp. In these
variables, the geometry of the pth inclusion can be alternatively defined by a pair of parameters (n0p, dp),

where dp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl1pÞ2 � ðl2pÞ2

q
. At the matrix–inclusion interface np = n0p, the perfect bonding
½½u��fp¼f0p
¼ 0; ½½r � n��fp¼f0p

¼ 0; p ¼ 1; 2; . . . ;N ; ð26Þ
is assumed. The stress in and around the inclusions is induced by the far field ur: we assume it in the form
(18).

To write the solution for a multiply connected matrix domain, owing to linearity of the problem, we
make use of the superposition principle:
uð0Þ ¼ urðzÞ þ
XN
p¼1

uspðz� ZpÞ; ð27Þ
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where usp is a disturbance induced by the pth inclusion and decaying at jzj ! 1. The corresponding complex
potentials us

p and ws
p are again taken in the form (8) and (9), where, by analogy with (16), Anp = Bnp = 0 for

n 6 0.
Note that the separate terms of sum in (27) are written in variables of different coordinate systems.

Therefore, in order to satisfy the interface conditions (26) for, say qth inclusion in a way exposed in the
previous section, we need to find local expansion of (27), i.e., express all its terms in variables of a given
local coordinate system. Our aim is to transform
usp ¼ ,0u
s
p zp
� 	

� zp � �zp
� 	

us0
p zp
� 	

� ws
p zp
� 	

; ð28Þ
where
us
p ¼

X1
n¼0

Anpt
�n
p ; ð29Þ

ws
p ¼ ws

0p � ws
1p ¼

X1
n¼0

Bnp � 2nAnp
sinh f0p
sinh np

sinhðnp � f0pÞ
� �

t�n
p ;
into urpq, written in the same form as usp, but in the qth coordinate basis, namely
urpq ¼ ,0u
r
pq zq
� 	

� zq � �zq
� 	

ur0
pq zq
� 	

� wr
pq zq
� 	

; ð30Þ
with
ur
pq ¼

X
n

anpqt�n
q ; ð31Þ

wr
pq ¼ wr

0pq � wr
1pq ¼

X
n

bnpq � 2nanpq
sinh f0q
sinh nq

sinhðnq � f0qÞ
� �

t�n
q .
For this purpose, we utilize the re-expansion formulas (referred sometimes as the addition theorems) for the
complex potentials, derived in Appendix B. So, by applying (B.1) to us

p we obtain
us
p ¼

X1
n¼0

Anpt
�n
p ¼

X
n

anpqt�n
q ¼ ur

pq; ð32Þ
from where we immediately get
anpq ¼
X1
m¼1

Ampg
pq
mn; ð33Þ
where gpqmn are the re-expansion coefficients given by (B.9). With anpq taken in the form (33) the first terms in
(28) and (30) coincide, ,0us

p ¼ ,0ur
pq.

Determination of bnpq is somewhat more involved. From (32) we conclude also us0
p ðzpÞ ¼ ur0

pqðzqÞ and thus
the second term in (28) can be transformed as
zp � �zp
� 	

us0

p ¼ Zpq � Zpq

� 	
ur0

pq þ zq � �zq
� 	

ur0

pq. ð34Þ
To provide usp ¼ urpq, we determine bnpq in (31) from
ws
p ¼ wr

pq þ Zpq � Zpq

� 	
ur0

pq. ð35Þ
To this end, all the terms in (35) should be expanded into a series of tq; below, we outline the derivation
procedure.
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The simplest thing is ws
0p: likewise us

p (32) and (33), we write
ws
0p ¼

X1
n¼1

Bnpt
�n
p ¼

X
n

X1
m¼1

Bmpg
pq
mn

 !
t�n
q . ð36Þ
Next, we re-group ws
1p as
ws
1p ¼

X1
n¼1

nAnp 1� t�2
0p

� �
t�n
p � 1

2
t0p � t�1

0p

� �2 t�ðnþ1Þ
p

sinh np

" #
. ð37Þ
With the aid of (B.1) and (B.11), ws
1p can be expanded into
ws
1p ¼

X
n

X1
m¼1

mAmp 1� t�2
0p

� �
gpqmn �

1

2
t0p � t�1

0p

� �2
lpq
mþ1;n

� �( )
t�n
q . ð38Þ
where lpq
mn are the re-expansion coefficients in (B.11). Similarly to (37), wr

1pq can be re-arranged to
wr
1pq ¼ 1� t�2

0q

� �X
n

nanpqt�n
q þ t0q � t�1

0q

� �2X1
n¼1

nanpq
tnþ1
q � t�ðnþ1Þ

q

tq � t�1
q

; ð39Þ
by applying the formula
tnþ1 � t�ðnþ1Þ

t� t�1
¼
Xn
k¼0

t2k�n ð40Þ
and (33) we get
wr
1pq ¼

X
n

X1
m¼1

Amp t�2
0q � 1

� �
nj jgpqmjnj þ t0q � t�1

0q

� �2X1
k¼0

ðj n j þ2kÞgpqm;jnjþ2k

" #( )
t�n
q . ð41Þ
The last remaining term is ðZpq � ZpqÞur0
pq; by applying to it the procedure described above,

one obtains
ur0

1pq ¼
2

dq

X
n

X1
m¼1

Amp

X1
k¼0

ðj n j þ1þ 2kÞgpqm;jnjþ1þ2k

" #( )
t�n
q . ð42Þ
Collecting, finally, all the expansions gives us the following bnpq expression for n < 0:
bnpq ¼
X1
m¼1

Bmpg
pq
mn þ

X1
m¼1

Amp

(
m
2

t0p � t�1
0p

� �2
lpq
mþ1;n þ n t�2

0q � 1
� �

� n 1� t�2
0p

� �h i
gpqmn þ t0q � t�1

0q

� �2
:

�
X1
k¼1

ð2k � nÞgpqm;2k�n þ
2

dq

�Zpq � Zpq

� 	X1
k¼0

ð2k þ 1� nÞgpqm;2kþ1�n

)
ð43Þ
for n > 0, in accordance with (14),
bnpq ¼ b�n;pq þ n t20q � t�2
0q

� �
anpq. ð44Þ
Now, we come back to (27) and write
XN
p¼1

uspðzpÞ ¼ usqðzqÞ þ urqðzqÞ; ð45Þ
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where urqðzqÞ ¼
P

p 6¼qu
r
pqðzqÞ has the form (30), (31) with replace ur

pq to ur
q ¼

P
p 6¼qu

r
pq, w

r
pq to wr

q ¼
P

p 6¼qw
r
pq;

also,
anq ¼
X
p 6¼q

anpq; bnq ¼
X
p 6¼q

bnpq. ð46Þ
No problems arise with the linear term in (27):
urðzÞ ¼ Uq þ urðzqÞ; ð47Þ

where Uq = (X1qE11 + X2qE12) + i(X1qE12 + X2qE22) is the constant; ur(zq) adds to (46) a few extra terms
defined by (19) and thus, the problem has been reduced to that was considered in Section 2.

The resolving set of equations is
,0Anq � ,qCnq þ ðDnq � 2n sinh 2f0qCnqÞt2n0q ¼ �,0anq þ b�n;qt
2n
0q;

Bnq þ ,qCnqt
2n
0q � Dnq ¼ ,0a�n;qt

2n
0q � bnq;

Anq � kqCnq � kqðDnq � 2n sinh 2f0qCnqÞt2n0q ¼ �anq � b�n;qt
2n
0q;

Bnq � kqCnqt
2n
0q � kqDnq ¼ �a�n;qt

2n
0q � bnq;

n ¼ 1; 2; . . . ; q ¼ 1; 2; . . . ;N ;

ð48Þ
where kq = Gq/G0; Cnq and Dnq are the expansion coefficients of solution in the qth inclusion. To get it in an
explicit form for direct solver one needs to substitute (31) and (43) into (46) and then into (48). Alterna-
tively, the simple iterative solving procedure can be applied here: given some initial guess of Anq, Bnq,Cnq

and Dnq for 1 6 q 6 N , we compute anq and bnq from (33), (43) and (46), then substitute into the right-hand
side of (48) and solve it for the next approximation of unknown coefficients, etc. As our computational
practice shows, this procedure works well for a whole range of input parameters excluding the case of
nearly touching inclusions where, to provide convergence of numerical algorithm, the initial approximation
has to be taken properly.
4. Application to the mechanics of composites

The general solution obtained in the previous section can be applied to study a variety of composite
mechanics problem with an accurate account for interactions between the inclusions. With this purpose
we will establish a link between the current complex potential approach and another general approach used
in micromechanics of composite materials and based on such fundamental notions as Green�s function and
the Eshelby tensor. Namely, the stress distribution in the medium with the matrix V0 containing a finite
array of homogeneous inclusions Vp with the characteristic functions Hp(x) (p = 1, . . . , N), induced by re-
mote loading r1(x) = r1 = const. and the disturbances caused by the inclusions is defined from the general
integral equation
rðxÞ ¼ r1 þ
XN
i¼1

Z
Cðx� yÞf½MðyÞ �M0�rðyÞ þ bðyÞgHpðyÞdy. ð49Þ
Here the constitutive equations
rðxÞ ¼ LðxÞeðxÞ þ aðxÞ; eðxÞ ¼ MðxÞrðxÞ þ bðxÞ ð50Þ

are assumed where M = (L)�1 and L are the tensor of compliance and stiffness, b and a � �Lb are second-
order tensors of eigenstrains and eigenstresses, respectively, which are assumed to be vanished in the matrix
v0 : a(x), b(x) � 0 (x 2 V0) and b(y) = b = const, a(y) = a = const (y 62 V0). The integral operator kernel,
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C(x � y) � �L0[Id(x � y) + U(x � y)L0], Uijkl((x) = [$q$l Gik(x)](ij)(kl), called the Green stress tensor is
defined by the infinite-homogeneous-body Green�s function of the Navier equation with an elastic modulus
tensor L0 :${L0[$�G(x) + ($ � G(x))T]/2} = �dd(x), vanishing at infinity (jxj ! 1), (Æ)T denotes matrix
transposition, and d(x) is the Dirac delta function; the subscript pair with parentheses denotes symmetri-
zation on (ij) and (kl).

The comprehensive review of methods used for solution of (49) can be found in the paper by Bury-
achenko and Pagano (2005). However, in micromechanics of random structure composites only the
semi-analytical approximative solutions of (49) based on both the Eshelby tensor Sq (Eshelby, 1957) and
external Eshelby tensor Te

qðx� xqÞ

Sq ¼ � Uðx� yÞh iqL0; x; y 2 V q;

Te
qðx� xqÞ ¼ Uðx� yÞh iq;

hð�Þiq � ðmesvqÞ�1

Z
V q

ð�Þdy; x 62 V q;

ð51Þ
are usually explored. The tensor Te
pqðxp � xqÞ ¼ hTe

qðy� xqÞip, initially introduced by Willis and Acton
(1976) for the spherical identical inclusions (see also numerous references in Buryachenko, 2001), plays a
key role in deriving the second-order approximation of effective, or macroscopic, elastic moduli of compos-
ite. In the case of a stress analysis of composite materials, it is more convenient to use the following tensors
expressed in terms of ones introduced earlier (51):
Qq ¼ I� L0Sq;

Tr
qðx� xpÞ ¼ �L0T

e
qðx� xpÞL0;

Tr
pqðxp � xqÞ ¼ �L0T

e
pqðxp � xqÞL0.

ð52Þ
For representation of the tensors (52) in the terms of the approach developed in the previous sections, we,
at first, will present them in the forms of particular solutions of (49). Namely, for a single homogeneous
elliptical inclusion Vq with the matrix elastic properties (Lq(x) � L0 = const., b(x) = b = const. 5 0, x 2 Vq

and b(x) � 0, x 62 Vq)
rðxÞ ¼ Qqb for x 2 V q;

rðxÞ ¼ Tr
qðx� xqÞb for x 62 V q.

ð53Þ
The estimation of the tensorsQq, T
r
qðx� xqÞ, and Tr

pqðxp � xqÞ is a particular problem of the transformation
field analysis by Dvorak and Benveniste (1992) which can be realized by the different methods, for example
by the proposed one. Indeed, let the inclusion be subjected to the eigenstrain b(x) � const. (x 2 Vq) with a
single non-zero component bk = 1 (k = 1, 2, 3), otherwise bl � 0 (l = 1, 2, 3; l 5 k). Here and below, we
adopt short, or vectorial, notation: so, r = (r11, r22, r12)

T, b = (b11, b22, b12)
T, etc. Then, we obtain the ex-

plicit representation of the tensors Qp, T
r
q and Tr

pq in terms of the known stress fields r(x) both inside and
outside the inclusion Vq:
QqjkjðxÞ ¼ rjðxÞ; x 2 V q;

Tr
qjkjðx� xqÞ ¼ rjðxÞ; x 62 V q;

Tr
pqjkjðxp � xqÞ ¼ rjðyÞ


 �
p
; y 2 V p.

ð54Þ
In the case of elliptic inclusion shape, the solution obtained in Section 3 can be readily used to evaluate
stress field in and around pre-stressed inclusion, and, hence, the tensors Qp, Tr

qðx� xqÞ, and
Tr

pqðxp � xqÞ. The only difference is the second condition in (26) which takes the form
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½½r � n��f¼f0q
¼ a � n or; equivalently; ½½e � n��f¼f0q

¼ b � n. ð55Þ
Since the material is homogeneous and bq is non-zero only in one inclusion, with p = q, its solution involves
only the first harmonics in (8) and (9) and leads to the resolving system quite similar in form to (22). After
simple algebra one obtains
A1q ¼ �
dq t20q � t�2

0q

� �
4 ,þ 1ð Þ I2;

B1q ¼
dq t20q � t�2

0q

� �
4 ,þ 1ð Þ 1� ,ð ÞI1 � I2t�2

0q

h i
;

C1q ¼
dq

4ð,þ 1Þ I1 þ I2t�2
0q

� �
;

D1q ¼
dq

4ð,þ 1Þ t20q þ ð,� 1Þt�2
0q

h i
I1 þ ,I2 þ t20q � t�2

0q

� �
I2t�2

0q

n o
;

ð56Þ
where
I1 ¼
2

,� 1ð Þ b11 þ b22ð Þ and I2 ¼ b22 � b11 � 2ib12. ð57Þ
With A1q, B1q, C1q and D1q determined from (56) and (57), the stress in any point in and around the pre-
stressed inclusion can be evaluated. Substitution of (56) into (8) and (9) and then into (4) followed by com-
parison with (53) gives us an explicit expression of the tensors Qq and Tr

q matching perfectly the analogous
results reported elsewhere (e.g., Mura, 1982).

To evaluate Tr
pq, we derive also the formula for an average stress in the inclusion hrip assuming b(x) � 0

(x 2 Vp). We rewrite (50) as
rp ¼ Lp
1

2
ruðpÞ þ ðruðpÞÞT
h i

ð58Þ
and substitute it in the representation for hrip and apply the Gauss theorem to reduce the integral in (51) to
that along the boundary Sp of inclusion:
rp


 �
p
¼ 1

2
ðmesvpÞ�1

Lp

Z
Sp

ðnuðpÞ þ uðpÞnÞds. ð59Þ
In (59) n is the outward unit vector normal to the boundary Sp; in the case of the ellipse,
n = n1 + in2 = x 0(np)/jx 0(np)j. Note also that fp = f0p at Sp and, in fact, integration in (59) reduces to inte-
gration over 0 < gp 6 2p. It is rather straightforward to show that only the terms in u(p) series expansion
containing the first Fourier harmonics in g give non-zero contribution to (59). After some algebra we come
to the following formulas:
r11h ip þ r22h ip ¼
16G0

dp
ReC�1;p;

r22h ip � r11h ip þ 2i r12h ip ¼
8G0

dp
D�1;p � C�1;pt

�2
0p

� �
.

ð60Þ
Noteworthy, this result is valid for an arbitrary, not necessarily uniform, stress field.
According to (54), integration in (60) is made over the area of the pth inclusion, p 5 q. Since Lq = L0

and bq f 0, the stress in this inclusion is nothing more than a disturbance field caused by b in a vicinity
of z = Zp. Thus, we have Cnp = anqp and Dnp = bnqp; then, from (60),



Table
Conve

nmax

1
3
5
7
9
11
13
15
. . .

25

FEM
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r11h ip þ r22h ip ¼
16G
dp

Rea�1;qp;

r22h ip � r11h ip þ 2i r12h ip ¼
8G
dp

b�1;qp � a�1;qpt
�2
0q

� �
.

ð61Þ
In turn, the coefficients anqp and bnqp can be expressed in terms of unknowns Anq and Bnq using the formulas
(33) and (43). In our specific case,
a�1;qp ¼ A1qg
qp
11; b�1;qp ¼ A1qc

qp
11 þ B1qg

qp
11. ð62Þ
The last remaining step is substitution of (56) into (62) and then into (61), from where an explicit form of
Tr

pq tensor can be easily recovered by comparison with (54).
5. Numerical study

The series solution derived above is an accurate, asymptotically exact one. This means that to get exact
values, one has to solve a whole infinite set of linear equations. In practice, we solve it by applying the
reduction method which means that we retain in (48) only a certain finite number nmax of equations and
unknowns. Based on asymptotic analysis of the linear set (48), it can be proven rigorously (e.g., Kantoro-
vich and Krylov, 1964) that approximate solution obtained in this way converges to an exact one as
nmax ! 1. Thus, any desirable accuracy can be achieved by proper choice of nmax. So, for the well-
separated inclusions (dilute composite case), even nmax = 1 provides reasonably good approximation.
The smaller the distance between the inclusions (more precisely, closest distance between their boundaries),
the higher is order of Fourier harmonics which must be retained in the numerical solution to ensure appro-
priate accuracy of computations. It is hard to believe that there exists a general rule and, probably, the best
way is to find nmax from a series of numerical experiments for each specific problem. Some idea of conver-
gence rate as a function of distance Z12 can be drawn from Table 1, where the normalized stress r22(l1 + 0i)/
S22 values are given. In the problem considered here, the centers of two identical elliptic holes (k1 = k2 = 0)
with aspect ratios e1 = e2 = 0.3 in the plane with m0 = 0.3 are placed on the Ox1 axis (see Fig. 1) and the far
field is uniaxial tension in the x2 direction. One-particle solution (Z12 =1) gives an exact answer
r22ðl1 þ 0iÞ ¼ ð1þ 2=e1ÞS22 ¼ 7 2

3
S22; for a finite Z12, the calculated r22 values depend on nmax.

As seen from the table, for Z12 = 5l1 already nmax = 5 provides four-digit accuracy of stress evaluation at
the point z = l1 + 0i where the stress peak value (and, expectably, lowest convergence rate) is observed. At
the same time, for nearly touching holes (Z12 = 2.05l1) as many as 25 harmonics are required to get a prac-
1
rgence rate of r22(l1 + 0i)/S22 as a function of Z12/l1

Z12 = 5l1 Z12 = 3l1 Z12 = 2.5l1 Z12 = 2.1l1 Z12 = 2.05l1

7.802 8.142 8.513 9.539 9.875
7.826 8.340 9.098 12.73 14.70
7.824 8.340 9.144 14.14 17.67
7.824 8.338 9.139 14.75 18.38
7.824 8.337 9.135 15.02 20.40
7.824 8.337 9.134 15.16 21.02
7.824 8.337 9.133 15.22 21.40
7.824 8.337 9.133 15.25 21.63
. . . . . . . . . . . . . . .

7.824 8.337 9.133 15.28 21.99

7.82 8.34 9.13 15.29 22.03



Fig. 1. Stress r22 variation along the first hole surface due to uniaxial tension S22 = 1 of a plane with two holes as a function of
distance Z12 between them.
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tically convergent solution: deviation from the accurate data obtained by the finite element method (last
line of Table 1) does not exceed 0.2%. Based on this observation, the value nmax = 25 is adopted for all sub-
sequent calculations.

The problem under study has a number of parameters and its exhaustive parametric study is the subject
of a separate paper. In what follows, we restrict ourselves to the two-inclusion problem and show the way
and extent to which stress concentration on elliptic inclusions is affected by their position, shape, elastic
properties and loading type. So, stress r22 variation along the first hole boundary due to uniaxial tension
S22 = 1 of a plane with two identical holes with aspect ratio e2 = 0.3 as a function of relative distance Z12/l1
between them is shown in Fig. 1. The r22 stress reaches maximum at g1 = 0, i.e. at the point nearest to the
next hole and considerable growth of maxr22 is observed as the holes are drawn together. At the same time,
r22 on the opposite side of the hole (g1 = p) does not vary much from that for a single hole.

Curves in Fig. 2 demonstrate the effect on r11 variation along the interface of the particle–particle and
particle–hole interactions. Here, the far load is S11 = 1; curves 1–4 are calculated for k1 = k2 = 100,
m1 = m2 = m0 = 0.3 (two hard inclusions with e = 0.3) whereas curves 5–8 are obtained for k1 = 100,
k2 = 0 (hard inclusion and hole). The relative distance Z12/l1 is equal to 3.0 (curves 1 and 5), 2.5 (curves
2 and 6), 2.2 (curves 3 and 7) and 2.1 (curves 4 and 7). It is seen from Fig. 2 that in the case of two hard
inclusions considerable growth of maxr11 is observed. On the contrary, the presence of an adjacent hole
expectedly results in r11 stress relaxation well below the value we have on a single inclusion.

In Fig. 3, r11 variation is shown for varying aspect ratios and fixed relative position of elliptic fibers,
Z12 = 2.1l1. Calculations for 0.5 < e < 1 do not detect a substantial effect on stress concentration of the
aspect ratio. However, for e of order 0.3 and less, the peak stress grows rapidly and in the limit e ! 0, when
elliptic inhomogeneity degenerates into the plane crack of rigid line inclusion, it may become infinitely
large, see (23). It was already discussed that the method exposed provides an accurate solution for arbitrary
(including e = 0) aspect ratio, and no numerical difficulties arise due to this small parameter. A numerical
example showing inclusion–crack interaction will be given at the end of this section.

The effect on stress distribution of the relative position of the inclusions is clearly seen from Fig. 4, where
curve 1 corresponds to Z12 = 2.1l1 (centers of holes lie on the Ox1), curve 2 shows r11 for intermediate



Fig. 2. Stress r11 variation along the first inclusion surface due to uniaxial tension S11 = 1 of a plane with two inclusions as a function
of distance Z12 between them.

Fig. 3. Stress r11 variation along the first inclusion surface due to uniaxial tension S11 = 1 of a plane with two elliptic inclusions as a
function of their aspect ratio e, Z12 = 2.1l1 + 0i.
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position Z12 = l1 + 2l2i and curve 3 is calculated for Z12 = 2.1l2i (one ellipse above another); e1 = e2 = 0.3
and S11 = 1. In contrast to the first case where r11 in a vicinity of the point z1 = l1 + 0i is more than two
times higher than that on a single inclusion, in the case of the two elliptic inclusions arranged in the x2 direc-
tion maxr11 is well below that value. This so-called ‘‘shielding’’ effect is observed not only for the peak
stress but also for the averaged stress in the inclusion (see Fig. 6).



. . . .

Fig. 4. Stress r11 variation along the first inclusion surface due to uniaxial tension S11 = 1 of a plane with two elliptic inclusions as a
function of relative position: line 1 � Z12 = 2.1l1 + i0; line 2 � Z12 = l1 + 2l2i; line 3 � Z12 = 0 + 2.1l2i.
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The above presented data are summarized in the next two tables, where an interface stress concentration
factor defined as Kijkl ¼ maxgrijðgÞ=Skl, with rij calculated for the uniform far stress field Snm = dnkdml is
given. So, Kijkl(1) represents stress concentration on a single inclusion being a function of its shape and
elastic properties. To evaluate the particle–particle interaction effect on the interface stress, we.introduce
the normalized stress concentration factor (NSCF) as Kijkl(Z12)/Kijkl(1). The calculated NSCF
K2222(Z12)/K2222(1) values for two elliptic holes are shown in Table 2 whereas Table 3 contains the values
Table 2
Normalized stress concentration factor K2222(Z12)/K2222(1) as a function of Z12/l1 and e for two identical elliptic holes: k1 = k2 = 0;
m0 = 0.3

Z12/l1 e = 0.1 e = 0.3 e = 0.5 e = 0.7 e = 0.9

3.0 1.106 1.087 1.073 1.069 1.079
2.5 1.215 1.191 1.201 1.246 1.316
2.2 1.467 1.500 1.657 1.832 1.976
2.1 1.772 1.993 2.352 2.629 2.822
2.05 2.234 2.868 3.468 3.848 4.078

Table 3
Normalized stress concentration factor K1111(Z12)/K1111(1) as a function of Z12/l1 and e for two identical hard elliptic inclusions:
k1 = k2 = 100; m0 = m1 = m2 = 0.3

Z12/l1 e = 0.1 e = 0.3 e = 0.5 e = 0.7 e = 0.9

3.0 1.132 1.193 1.258 1.319 1.380
2.5 1.280 1.432 1.572 1.689 1.777
2.2 1.652 2.069 2.366 2.528 2.606
2.1 2.115 2.951 3.348 3.467 3.474
2.05 2.969 4.324 4.695 4.680 4.570



Fig. 6. Average stress hr11i in the inclusions due to uniaxial tension S11 = 1 of a plane with a finite cluster of thin hard inclusions.

Fig. 5. Normal opening mode SIF KI=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pd1=S22

p
of a crack nearby circular inclusion or hole as a function of relative position

Z12/l1 = 3 + Y12/l1: line 1 � k2 = 0; line 2 � k2 = 23; solid points represent the data by Erdogan et al. (1974).
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K1111(Z12)/K1111(1) for two hard elliptic inclusions as a function of Z12/l1 and e. In both cases considered,
the tendency is quite similar: NSCF is growing up as inhomogeneities move toward each other. Also, for
Z12 being fixed the maximum NSCF values are observed on circular holes and near-to-circular hard inclu-
sions although corresponding absolute stress values for e = 0.1 are 3 to 4 times higher than those for
e = 0.9.
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In the next example we consider, the inclusions differ in size, shape and properties. Specifically, we put
e1 = 0 and k1 = 0 to degenerate the first inclusion into a crack; the second inclusion is taken circular
(e2 = 1), with radius R2 = 2d1. In Fig. 5, the dimensionless stress intensity factor K�

I ¼ KI=
ffiffiffiffiffiffiffiffi
pd1

p
calculated

according to (24) for S22 = 1 is shown as a function of relative distance, Y12/l1. Curves 1 and 2 correspond
to k2 = 0 and k2 = 23, respectively; m0 = 0.35 and m2 = 0.3. The solid points represent the data obtained by
Erdogan et al. (1974) who used the method of singular integral equations. Expectedly, SIF decreases as the
crack approaches hard inclusion and grows rapidly in a vicinity of the hole. Close correlation between our
results and Erdogan�s data can serve as yet another validation of the theory developed and numerical
results presented in the paper. A slight discrepancy between the compared results for Y12/l1 = 0.3 means
that the value nmax = 25 adopted by us for numerical study is not sufficient. Indeed, in the last case a
gap between the crack tip and boundary of the hole is about 0.02l1 only. For such a geometry, the conver-
gence rate of series (24) is rather slow (see Table 1) and hence additional harmonics must be taken into ac-
count in the practical solution to ensure sufficient accuracy of numerical results. Retaining in solution the
harmonics up to nmax = 40 (the dotted line in Fig. 5) gives K�

I ¼ 4.26 which differs from the value reported
by Erdogan et al. (1974) by less than 0.1%.

To complete this section, we give one application of the theory developed to the specific problem of com-
posite mechanics studied by Sheng et al. (2004) where a polymer nanocomposite of clustered structure was
considered. There, an isolated cluster was idealized as a multi-layer stack containing N silicate plates with
uniform interlayer spacing. The experimentally observed plate thickness was roughly 1nm, the layer spacing
ranged from 2 to over 5 nm, and the number of plates per cluster varied from 1 to 50. In our model, the
silicate nanolayers are approximated by aligned ellipses with aspect ratio e = 0.01, Young�s modulus
E1 = 300 GPa and Poisson�s ratio m1 = 0.4 embedded into Epox862 matrix with E0 = 3.01 GPa and
m0 = 0.41 (see Tandon et al., 2002; Sheng et al., 2004). The number of inclusions varied from 1 to 15,
and their position is given by Zp = 0 + 4(p � 1)l2i, p = 1, 2, . . . , N. In Fig. 6, the averaged stress concentra-
tion factor hr11i/S11 calculated from (61) for each inclusion in the cluster is shown by the solid points. As
computations show, for a single inclusion hr11i/S11 = 34.6; for N = 15, it decreases more than two times
even for the outer ellipses where the average stress reaches maximum. Also, variation of hr11i/S11 grows
up with the number of inclusions N increased and reaches 300% in the cluster of 15 inclusions while for
N = 5 stress concentration factor is varying just on 40%. Such a behavior is qualitatively confirmed by
2D finite element analysis by Sheng et al. (2004) of three rectrangular inclusion in the matrix.
6. Conclusions

In the present work, an accurate analytical solution has been developed for a piece-homogeneous elastic
plane containing a finite array of elliptic inclusions of arbitrary size, aspect ratio, location and elastic prop-
erties. The method developed combines Muskhelishvili�s representation of general solution in terms of com-
plex potentials with the superposition principle and newly derived re-expansion formulae to obtain a
complete solution of the many-inclusion problem. By exact satisfaction of all the interface boundary con-
ditions, the primary boundary-value problem stated on a complicated multiply connected domain has been
reduced to an ordinary, well-posed set of linear algebraic equations. The properly chosen form of potentials
provides a remarkably simple form of solution and thus an efficient computational algorithm. The theory
developed is rather general and can be applied to solve a variety of composite mechanics problems. The
advanced models of composite which involve up to several hundred inclusions and thus provide an accurate
account for the microstructure statistics and fiber–fiber interactions can be considered in this way. The
numerical examples are given showing high accuracy and numerical efficiency of the method developed
and disclosing the way and extent to which the selected structural parameters influence the stress concen-
tration at the matrix–inclusion interface.
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Appendix A. Auxiliary theoretical results

A.1. Displacement and traction at the elliptic interface

Let us start with the displacement u given by (3). It contains derivative u 0(z) = du/dz, which can be
rewritten as
u0ðzÞ ¼ du
dn

dn
dz

¼ u0ðnÞ
x0 nð Þ . ðA:1Þ
Taking also account of that on the ellipse f = f0
ðz� �zÞ ¼ d sinh f0ðeig � e�igÞ; ðA:2Þ
we get for the second term in (3)
�ðz� �zÞu0ðzÞ ¼ d sinh f0
x0ðnÞ

ðeig � e�igÞ
X
n

nAne
�nf0þing. ðA:3Þ
On the other hand, the second term in (9) for f = f0 is
w1 ¼
d sinh f0
x0ðnÞ

X
n

nAnðeig � e�igÞe�nf0�ing. ðA:4Þ
It is clear that these terms cancel each other in (3) and, thus, one obtains
ujf¼f0
¼ ,u� w0 ¼

X
n

ð,Ant
�n � Bnt�nÞ. ðA:5Þ
Now we proceed with the traction vector Tn in the form (7). Taking account of (A.1) gives us
ðrff � irfgÞ
2G

¼ u0

x0 þ
u0

x0 �
x0

x0 ðx� xÞ
u00 � x

x0 u0

ðx0Þ2
� u0

x0 þ
w0

x0

" #
. ðA:6Þ
Hereinafter, the argument n is omitted and differentiation is made with respect to n. Next, we re-group it to
ðrff � irfgÞ
2G

¼ u0 � w0
0

x0 þ 1

x0x0 ðx0 þ x0Þu0 þ x0w0
1 � ðx� xÞ u00 � x

x0 u
0

� �h i
. ðA:7Þ
It follows from (A.1)–(A.4) that for f = f0
w1 ¼
ðx� xÞ

x0 u0; ðA:8Þ
being substituted into (A.7), it gives
ðrff � irfgÞ
2G

¼ u0 � w0
0

x0 þ 1

x0x0 ðx0 þ x0Þu0 � ðx� xÞu00 þ x0w0
1 þ xw1

� 

. ðA:9Þ
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Now, differentiation of w1 (9) with respect to n yields
x0w0
1 þ xw1 ¼ �d sinh f0

X
n

nAn ðn� 1Þeig � ðnþ 1Þe�ig
� 


e�nf0�ing. ðA:10Þ
On the other hand, we combine (A.2) with
x0 þ x0 ¼ d sinh f0ðeig þ e�igÞ ðA:11Þ

to prove that
ðx0 þ x0Þu0 � ðx� xÞu00 ¼ d sinh f0
X
n

nAne
�nf0�ing nðeig � e�igÞ � ðeig þ e�igÞ

� 

ðA:12Þ
is equal to (A.10) with opposite sign. Thus, the whole expression in square brackets in (A.7) is equal to zero
and we obtain, by taking conjugate of (A.9),
x0 T n

2G

����
f¼f0

¼ u0 � w0
0 ¼

X
n

ð�nÞ Ant
�n � Bnt�n

� 	
. ðA:13Þ
A.2. Regularity condition

To prove regularity of the displacement field under condition (14) imposed we show that the separate
terms in (3) are the polynomials of variables x1 and x2. First, u can be written as
uðzÞ ¼ Cnðtn þ t�nÞ ¼ 2Cn cosh½nArccoshðz=dÞ�; ðA:14Þ

we recognize that the hyperbolic cosine standing on the right-hand side of Eq. (A.14) is the nth degree
Chebyshev�s polynomial of complex variable z/d. It is quite clear that its derivative with respect to zu 0(z)
as well as the product ðz� �zÞu0 satisfies the regularity condition as well.

Next,
w0 ¼ Dnt
�n þ D�nt

n ¼ D�nðtn þ t�nÞ þ 2nCn sinh 2f0t
�n; ðA:15Þ
here, the first term is, likewise (A.14), the polynomial of degree n whereas the second one has the singularity
points at z = ±d. However, it is rather straightforward to show that the difference
w1 � 2nCn sinh 2f0t
�n ¼ nCn

sinh f0
sinh n

ðtn�1 � t�ðn�1ÞÞt0 � ðtnþ1 � t�ðnþ1ÞÞ=t0
� 


ðA:16Þ
is also a polynomial of z: it follows directly from the fact that
d

dz
tn þ t�nð Þ ¼ n

tn � t�n

d sinh n
. ðA:17Þ
Thus, a sum w = w0 + w1 and, hence, u (3) is regular provided the coefficients Cn and Dn with positive and
negative indices satisfy the conditions (14).
Appendix B. Re-expansion formulae for singular complex potentials

Our aim is to re-expand the singular complex potentials us
p ¼

P1
n¼1Anpt�n

p , written in variables of pth lo-
cal curvilinear coordinate system, into a series ur

pq ¼
P

nanpqt
�n
q , expressed in the variables of the qth coor-

dinate system. In what follows, we derive the formula
t�n
p ¼

X
m

gpqnmt
�m
q ; n ¼ 1; 2; . . . ; ðB:1Þ
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where tp ¼ exp np ¼ zp=dp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzp=dpÞ2 � 1

q
, zp = zq + Zpq and the expansion coefficients

gpqnm ¼ gnmðZpq; dp; dqÞ for p, q = 1, 2, . . . , N. In the particular case dp = dq and X2p = X2q, Meisner and Kou-
ris (1995) expressed gnm as an infinite integral of the modified Bessel functions of first kind product. Here,
we obtain an explicit expression of gpqnm by a series of rational functions for the arbitrary position and
parameters of coordinate systems.

The most straightforward way2 is to combine the three following easy-to-derive expansions:
2 Th
schem
techni
means
t�n
p ¼

X1
k¼0

n
nþ 2k

Ck
nþ2k

dp

2zp

� �nþ2k

; zp
�� �� > dp; ðB:2Þ

z�n
p ¼

X1
k¼0

Ck
nþk�1ð�1ÞkZ�ðnþkÞ

pq zkq; zq
�� �� < Zpq

�� ��; ðB:3Þ
and
2zq
dq

� �n

¼
Xn
k¼0

Ck
nt

2k�n
q . ðB:4Þ
The last formula is finite and has no geometric restrictions. Substituting (B.3) into (B.2) and then (B.4) into
the resulting expression gives, after a bit of algebra, the following expression of gnm in (B.1)
gpqnm ¼ ndn
pð�1Þm

X1
l¼0

d2lþm
q Mnml dp; dq

� 	 ðnþ mþ 2l� 1Þ!
2Zpq

� 	nþmþ2l ; ðB:5Þ
where
Mnml dp; dq

� 	
¼
Xl
k¼0

dp=dq

� 	2k
k!ðl� kÞ!ðk þ nÞ!ðmþ l� kÞ! . ðB:6Þ
Noteworthy, in the case dp = dq this expression simplifies to (Kushch, 1996)
Mnml ¼
ðnþ mþ lþ 1Þl
l!ðnþ lÞ!ðmþ lÞ! ; ðB:7Þ
where (n)m is Pohgammer�s symbol. The obtained expression (B.5) is simple and easy to compute. Note also
gnm = gn,�m; it follows directly from the fact that t�n

p is regular in a vicinity of Zq, and hence its expansion
must comply with the condition (14). However, its principal drawback is the geometric restrictions, narrow-
ing substantially its convergence area. Two of them, namely jzpj > dp and jzqj < jZpqj came from (B.2) and
(B.3), respectively; jZpqj > (dp + dq) is an additional condition providing series convergence in (B.5).

To fix this problem, we rewrite (B.5) in a somewhat different form. Namely, we transform it according to
the formula
dpq

2Zpq

� �n

¼
X1
k¼0

ð�1ÞkCk
nþk�1t

�ðnþ2kÞ
pq ; ðB:8Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq
where dpq = dp + dq and tpq ¼ Zpq=dpq þ ðZpq=dpqÞ2 � 1. After appropriate change of summation order,
we come to
is derivation is rather illustrative and does not pretend to be mathematically rigorous. A general and theoretically substantiated
e of derivation of the type (B.1) expansions was suggested by Ivanov (1968). His rather involved, based on the integral transform
que approach is flawless from a mathematical standpoint. However, in our case the final result coincides with (B.9), obtained by
of standard algebra.
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gpqnm ¼ ð�1Þmn dp

dpq

� �nX1
j¼0

t�ðnþmþ2jÞ
pq

Xj
l¼0

ð�1Þj�l

ðj� lÞ!
dp

dpq

� �mþ2l

Mnml dp; dq

� 	 ðnþ mþ lþ j� 1Þ!
ðj� lÞ! . ðB:9Þ
It can be proven that a series (B.1) converges within an ellipse centered in Zq with inter-foci distance dpq and
passing the pole of pth elliptic coordinate system closest to Zq.

As is easily seen, such a convergence area is quite sufficient to solve for any two non-overlapping ellipses.
For well-separated inclusions, both (B.5) and (B.9) give the same numerical value of gnm. Therefore, when
we solve numerically for many inclusions, the computational effort-saving strategy is to apply (B.9) to clos-
est neighbors whereas interaction of the rest, more distant inclusions is evaluated using more simple for-
mula (B.5).

Finally, we mention two useful consequences of the formula (B.1). The first of them can be obtained by
differentiating both parts of (B.1) with respect to zq. It gives us
t�n
p

sinh np
¼ dp

dq

X
m

m
n
gpqnm

t�m
q

sinh nq
; ðB:10Þ
being, in fact, an addition theorem for the alternate set of basic functions (see comments to the Eq. (9)).
Another differentiation of (B.1), this time with respect to Zpq results in
t�n
p

sinh np
¼
X
n

lpq
nmt

�m
q ; ðB:11Þ
where lpq
nm ¼ dp

n
d

dZpq
gpqnm. For lnm we also have two (general and simplified) expressions obtained by differen-

tiating (B.9) and (B.5), respectively.
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